
Optimal Effects via Token-Passing
Marvin Borner (Wilhelm-Schickard-Institut für Informatik)

University of

Tübingen

Optimality with Side Effects?

Optimality = Full Laziness

Goal: Do the minimal amount of reduction work.

let x = factorial(100)

in x + x

let x = factorial(100)

in maybeTrue() ? x : 0

⟹ delay & share reduction via Call-by-Need?

let f = x => x + factorial(100) // <-- evaluated twice!

in f(0) + f(1)

⟹ optimal reducers also share redexes!

Functional Languages with Side Effects, Traditionally

𝜆-calculus + side effects: let x = readInt() / readInt() // ?

• strict evaluation (CbV) ⟹ no inherent sharing & parallelism

• lazy + monads/state-passing ⟹ complex sharing mechanisms

+ parallel reduction is nontrivial without the one-step diamond property.

Optimal Solution

Ignore evaluation order completely for now. Combine:

• Unordered reduction (optimality/parallelism by choice)

• Ordered execution with side effects (+ controlled parallelism)

• One-step diamond property (strong confluence)

• Optimality property (maximal sharing, minimal redundancy)

Solution Strategy

• Translate to effectful interaction nets: { 𝜆 , 𝛼 , , ↑ } ∪ { ↓ , ↑ , }

• Duplicate iteratively using ⟹ maximal sharing by default

• Require tokens (↓) for execution of actors (: effectful)

• Pass tokens through the net, steered by reduction (returning ↓ : ↑)

Graph rewrites are local & satisfy the one-step diamond property:

𝜆

𝛼

M x

N k

⇝

M x

N k

(𝜆𝑥.𝑀) 𝑁 𝛽⇝𝑀{𝑥 ↦ 𝑁}

Beta Reduction

y𝑛
⋯
y1

x1 x2

⇝

⋯

y𝑛 y1

⋯

x1

⋯

x2
x1

⋯
x𝑛

⇝ ⋯

x1 x𝑛

Iterative Memory Management

Executing Actors

Arbitrary Execution Behavior

No oraclerequired!

↓

0
read

↑

42

Read Action

↓

0
abort

𝜈

Abort Thread

↓

0
foo

↑

⟦foo⟧

Recursion/FFI/RPC/…

Asynchronous Effects (“unsafePerformIO”)

𝛼

1
write

42↓

⟨⟩

Code: write(42)!

• If an action is idempotent and commutes with

every other action: Insert explicit token!

• Can then be executed asynchronously and will

be shared maximally by iterative duplication:

only gets executed once!

Reduction Paves the Path for Execution

Tokens are either part of asynchronous execution (“thread”), or a token-

passing semantics. If tokens are “stuck” (e.g. at the continuation k of

applications), they can only continue after interaction (e.g. 𝛽-reduction)

Execution Semantics from Interaction Rules
M

𝑅

N ↑

k

⇝

M

𝐿

↑ k

N
(𝑀 𝑁) ◁ △⇝ 𝑀 (𝑁 ◁)

(𝑁 >>= 𝑀) ◁ △⇝ (𝑁 ◁) >>= 𝑀

• Monadic Style: Translate binds to
𝑅 and units to 𝜂

• Direct Style: Replace 𝛼 with 𝑅 in

order to permit interaction with

the application’s continuation

• Redirect token by rotating agents

Monadic Style

let repl = do (

 _ <- print("Enter numbers!")

 x <- readInt()

 y <- readInt()

 _ <- writeInt(add(x, y)!)

 r <- repl

 r

) in repl

M

𝐿

↓ k

N

⇝ 𝛼

↑

M

N

k

↓

𝜂

k

M

⇝

↑

M

k

((𝑁 ▷) >>= 𝑀) △⇝ (𝑀 𝑁) ◁ (unit 𝑀) ◁ △⇝ 𝑀 ▷

Direct-Style Call-by-Value: Monadic bind Everywhere!

let repl = () => (

 writeInt(add(

 readInt(), readInt()))

 repl()

) in repl()

+ inference: lazy reduction

& strict execution!

M

𝐿

↓ k

N

⇝

↑

𝛼

M

N k

↓

𝜆

k

x M

⇝

↑

𝜆

k

x M

𝑀 (𝑁 ▷) △⇝ (𝑀 ◁) 𝑁 (𝜆𝑥.𝑀) ◁ △⇝ (𝜆𝑥.𝑀) ▷

(𝑀 ▷) 𝑁 △⇝ (𝑀 𝑁) ◁

Controlled Parallel Execution

↓

ψ

⇝
ψ

↓ ↓

∧

↑ ↑

⇝ 𝛼

↓

ψ 𝑀 𝑁 ◁ ψ⇝ ψ (𝑀 ◁) (𝑁 ◁) ∧ (𝑀 ▷) (𝑁 ▷) ψ⇝ (𝑀 𝑁) ◁

∨

↑

⇝
↑

∨ 𝑀 (𝑁 ▷) ψ⇝ 𝑁 ▷

let data = race(

 fetch("www1.example.com/data"),

 fetch("www2.example.com/data"),

 fetch("www3.example.com/data"),

)! // promises to be "pure"

Massive Parallelism by Strong Confluence*

Step count is independent of

reduction/execution order!

𝑀

𝑀1 𝑀2

𝑀′
0 500 1,000 1,500 2,000 2,500

0

5

10

15

Steps

Av
ai
la
bl
e
Pa
ra
lle
lis
m

collatz25, Pre-Reduced

Direct without inference
Direct with inference

Monadic

Effectful Optimality

• Only reduce “needed” terms (cf. Call-by-Need)

‣ Now includes any net containing tokens & actions

‣ Future work: reasoning with effect systems

• Share all reductions from same origin

‣ By iterative duplication (including redexes)

‣ Also: asynchronous actions via explicit tokens

*without race, full asynchronous execution, or optimal GC

	I. Optimality with Side Effects?
	I.A. Optimality = Full Laziness
	I.B. Functional Languages with Side Effects, Traditionally
	I.C. Optimal Solution

	II. Solution Strategy
	III. Executing Actors
	III.A. Arbitrary Execution Behavior
	III.B. Asynchronous Effects ("unsafePerformIO")

	IV. Reduction Paves the Path for Execution
	IV.A. Execution Semantics from Interaction Rules
	IV.B. Monadic Style
	IV.C. Direct-Style Call-by-Value: Monadic bind Everywhere!

	V. Controlled Parallel Execution
	VI. Massive Parallelism by Strong Confluence*
	VII. Effectful Optimality

