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OPTIMALITY WITH SIDE EFFECTS? EXECUTING ACTORS Direct-Style Call-by-Value: Monadic bind Everywhere!

M k k let repl = () => (

Optimality = Full Laziness Arbitrary Execution Behavior
readInt(), readInt()))
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e M A writeInt(add

Goal: Do the minimal amount of reduction work. v ~ repl()

let x = factorial(100) let x = factorial(100) U O U U %} ) A ) in repl()

in X + X in maybeTrue() ? x : 0O w ?6 . $ N Kk X M X M + inference: lazy reduction

— delay & share reduction via Call-by-Need? ‘ & [£o0] M (N v) N? MaN  (AxM) < ~» (Ax.M) > & strict execution!

let f = x => x + factorial(1l00) // <-- evaluated twice! read abort (M=) N v (MN)«

in f(0) + (1)

—s optimal reducers also share redexes! READ ACTION ABORT THREAD RECURsION/FFI/RPC/... CONTROLLED PARALLEL EXECUTION
Functional Languages with Side Effects, Traditionally Asynchronous Effects (‘unsafePerformI0”) ©
A-calculus + side effects: let x = readInt() / readInt() // 7 A Code: write(42) ! n n
« strict evaluation (CbV) = no inherent sharing & parallelism + Ifan act;lon ® 1'dem§) otent ancli. C_OmIEUte'S with v
« lazy + monads/state-passing =—> complex sharing mechanisms v o every other action: Insert explicit toxen .
el reduction ; 1 with h i ; « Can then be executed asynchronously and will . '
+ parallel reduction 1s nontrivial without the one-step diamond property. be shared maximally by iterative duplication: UMN<a » Yy(Ma)(N <) AM>)(N>) ~»  (MN)«
Optimal Solution & only gets executed once! let data = race(
Ignore evaluation order completely for now. Combine: :etCE 2 "WWW; : examp}e .com/ gata ! ; : "
etch("www2.example.com/data"),
« Unordered reduction (optimality/parallelism by choice) REDUCTION PAVES THE PATH FOR EXECUTION fetch("www3.examgle.com/data" ) ?
e Ordered execution with side effects (+ controlled parallelism) . - ) )! // promises to be "pure" ,
. One-step diamond property (strong confluence) Tokens are either part of asynchronous execution ("thread”), or a token- VM(N5) % N >
. Optimality property (maximal sharing, minimal redundancy) passing semantics. If tokens are “stuck” (e.g. at the continuation k of
applications), they can only continue after interaction (e.g. 8-reduction
PP ) they Y g/ ) MASSIVE PARALLELISM BY STRONG CONFLUENCE™®
SOLUTION STRATEGY Execution Semantics from Interaction Rules

Step count is independent of collatz25, Pre-Reduced
M M « Monadic Style: Translate binds to

« Translate to effectful interaction nets: {/\, 2\, &, @} U {D, D, 3} | reduction/execution order! 15 ———
« Duplicate iteratively using # = maximal sharing by default ~> &\ and units to /N M . —e— Direct with inference
- Require tokens () for execution of actors (¢y: effectful) 4 + Direct Style: Replace /= with &\ in [I_( \L'u . Honadk

N () k M M

« Pass tokens through the net, steered by reduction (returning (): () order to permit interaction with
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K N the application’s continuation

1 2
MN)s > MEN<) « Redirect token by rotating agents v
(N>=Ma ~» (NO>=M M’

Graph rewrites are local & satisty the one-step diamond property:

Available Parallelism
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L Monadic Style Steps
) ) EFFECTFUL OPTIMALITY
~> " let repl = do ( M M -
<- print("Enter numbers!") « Only reduce "needed” terms (cf. Call-by-Need)
A X <- readInt() s A s » Now includes any net containing tokens & actions
y <- readInt() N » Future work: reasoning with effect systems
AN “ Nk BN _ <- writelnt(add(x, y)!) k NG « Share all reductions from same origin
M) N~» Mix+— N 1 2 - . . . . . .
(D) S r<- repl N k M » By iterative duplication (including redexes)
BETA REDUCTION ITERATIVE MEMORY MANAGEMENT ) ] . (Np)>=M) » (MN)< (mitM)< ~» Mo » Also: asynchronous actions via explicit tokens
in rep

*without race, full asynchronous execution, or optimal GC
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