Optimal Effects via Token-Passing University of

. . e . e A BT
Marvin Borner (Wilhelm-Schickard-Institut fiir Informatik) frihE oA

oo, Tibingen

OPTIMALITY WITH SIDE EFFECTS? EXECUTING ACTORS Direct-Style Call-by-Value: Monadic bind Everywhere!

M k k let repl = () => (

Optimality = Full Laziness Arbitrary Execution Behavior
readInt(), readInt()))

o
e M A writeInt(add

Goal: Do the minimal amount of reduction work. v ~ repl()

let x = factorial(100) let x = factorial(100) U O U U %}) A) in repl()

in X + X in maybeTrue() ? x : 0O w ?6 . $ N Kk X M X M + inference: lazy reduction

— delay & share reduction via Call-by-Need? ‘ & [£o0] M (N v) N? MaN (AxM) < ~» (Ax.M) > & strict execution!

let f = x => x + factorial(1l00) // <-- evaluated twice! read abort (M=) N v (MN)«

in f(0) + (1)

—s optimal reducers also share redexes! READ ACTION ABORT THREAD RECURsION/FFI/RPC/... CONTROLLED PARALLEL EXECUTION
Functional Languages with Side Effects, Traditionally Asynchronous Effects (‘unsafePerformI0”) ©
A-calculus + side effects: let x = readInt() / readInt() // 7 A Code: write(42) ! n n
« strict evaluation (CbV) = no inherent sharing & parallelism + Ifan act;lon ® 1'dem§) otent ancli. C_OmIEUte'S with v
« lazy + monads/state-passing =—> complex sharing mechanisms v o every other action: Insert explicit toxen .
el reduction ; 1 with h i ; « Can then be executed asynchronously and will . '
+ parallel reduction 1s nontrivial without the one-step diamond property. be shared maximally by iterative duplication: UMN<a » Yy(Ma)(N <) AM>)(N>) ~» (MN)«
Optimal Solution & only gets executed once! let data = race(
Ignore evaluation order completely for now. Combine: :etCE 2 "WWW; : examp}e .com/ gata ! ; : "
etch("www2.example.com/data"),
« Unordered reduction (optimality/parallelism by choice) REDUCTION PAVES THE PATH FOR EXECUTION fetch("www3.examgle.com/data") ?
e Ordered execution with side effects (+ controlled parallelism) . -))! // promises to be "pure" ,
. One-step diamond property (strong confluence) Tokens are either part of asynchronous execution ("thread”), or a token- VM(N5) % N >
. Optimality property (maximal sharing, minimal redundancy) passing semantics. If tokens are “stuck” (e.g. at the continuation k of
applications), they can only continue after interaction (e.g. 8-reduction
PP) they Y g/) MASSIVE PARALLELISM BY STRONG CONFLUENCE™®
SOLUTION STRATEGY Execution Semantics from Interaction Rules

Step count is independent of collatz25, Pre-Reduced
M M « Monadic Style: Translate binds to

« Translate to effectful interaction nets: {/\, 2\, &, @} U {D, D, 3} | reduction/execution order! 15 ———
« Duplicate iteratively using # = maximal sharing by default ~> &\ and units to /N M . —e— Direct with inference
- Require tokens () for execution of actors (¢y: effectful) 4 + Direct Style: Replace /= with &\ in [I_(\L'u . Honadk

N () k M M

« Pass tokens through the net, steered by reduction (returning (): () order to permit interaction with

—_
o
\

\

(9}
\

K N the application’s continuation

1 2
MN)s > MEN<) « Redirect token by rotating agents v
(N>=Ma ~» (NO>=M M’

Graph rewrites are local & satisty the one-step diamond property:

Available Parallelism

M X M X Yn Y1 Yn Y1 [— \ \ \ \ \ -
|-] 0 500 1,000 1,500 2,000 2,500
L Monadic Style Steps
)) EFFECTFUL OPTIMALITY
~> " let repl = do (M M -
<- print("Enter numbers!") « Only reduce "needed” terms (cf. Call-by-Need)
A X <- readInt() s A s » Now includes any net containing tokens & actions
y <- readInt() N » Future work: reasoning with effect systems
AN “ Nk BN _ <- writelnt(add(x, y)!) k NG « Share all reductions from same origin
M) N~» Mix+— N 1 2 -
(D) S r<- repl N k M » By iterative duplication (including redexes)
BETA REDUCTION ITERATIVE MEMORY MANAGEMENT)] . (Np)>=M) » (MN)< (mitM)< ~» Mo » Also: asynchronous actions via explicit tokens
in rep

*without race, full asynchronous execution, or optimal GC

	I. Optimality with Side Effects?
	I.A. Optimality = Full Laziness
	I.B. Functional Languages with Side Effects, Traditionally
	I.C. Optimal Solution

	II. Solution Strategy
	III. Executing Actors
	III.A. Arbitrary Execution Behavior
	III.B. Asynchronous Effects ("unsafePerformIO")

	IV. Reduction Paves the Path for Execution
	IV.A. Execution Semantics from Interaction Rules
	IV.B. Monadic Style
	IV.C. Direct-Style Call-by-Value: Monadic bind Everywhere!

	V. Controlled Parallel Execution
	VI. Massive Parallelism by Strong Confluence*
	VII. Effectful Optimality

