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Optimality with Side Effects?

Optimality = Full Laziness

Goal: Do the minimal amount of reduction work.

let x = factorial(100)

in  x + x

let x = factorial(100)

in  maybeTrue() ? x : 0

⟹ delay & share reduction via Call-by-Need?

let f = x => x + factorial(100) // <-- evaluated twice!

in  f(0) + f(1)

⟹ optimal reducers also share redexes!

Functional Languages with Side Effects, Traditionally

𝜆-calculus + side effects: let x = readInt() / readInt() // ?

• strict evaluation (CbV) ⟹ no inherent sharing & parallelism

• lazy + monads/state-passing ⟹ complex sharing mechanisms

+ parallel reduction is nontrivial without the one-step diamond property.

Optimal Solution

Ignore evaluation order completely for now. Combine:

• Unordered reduction (optimality/parallelism by choice)

• Ordered execution with side effects (+ controlled parallelism)

• One-step diamond property (strong confluence)

• Optimality property (maximal sharing, minimal redundancy)

Solution Strategy

• Translate to effectful interaction nets: { 𝜆 , 𝛼 , , ↑ } ∪ { ↓ , ↑ , }

• Duplicate iteratively using  ⟹ maximal sharing by default

• Require tokens ( ↓ ) for execution of actors ( : effectful)

• Pass tokens through the net, steered by reduction (returning ↓ : ↑ )

Graph rewrites are local & satisfy the one-step diamond property:
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Iterative Memory Management

Executing Actors

Arbitrary Execution Behavior

No oraclerequired!
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Recursion/FFI/RPC/…

Asynchronous Effects (“unsafePerformIO”)
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Code: write(42)!

• If an action is idempotent and commutes with 

every other action: Insert explicit token!

• Can then be executed asynchronously and will 

be shared maximally by iterative duplication: 

only gets executed once!

Reduction Paves the Path for Execution

Tokens are either part of asynchronous execution (“thread”), or a token-

passing semantics. If tokens are “stuck” (e.g. at the continuation k of 

applications), they can only continue after interaction (e.g. 𝛽-reduction)

Execution Semantics from Interaction Rules
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• Monadic Style: Translate binds to 
𝑅  and units to 𝜂

• Direct Style: Replace 𝛼  with 𝑅  in 

order to permit interaction with 

the application’s continuation

• Redirect token by rotating agents

Monadic Style

let repl = do (

  _ <- print("Enter numbers!")

  x <- readInt()

  y <- readInt()

  _ <- writeInt(add(x, y)!)

  r <- repl

  r

) in repl
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Direct-Style Call-by-Value: Monadic bind Everywhere!

let repl = () => (

  writeInt(add(

    readInt(), readInt()))

  repl()

) in repl()

+ inference: lazy reduction

& strict execution!
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Controlled Parallel Execution
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let data = race(

  fetch("www1.example.com/data"),

  fetch("www2.example.com/data"),

  fetch("www3.example.com/data"),

)! // promises to be "pure"

Massive Parallelism by Strong Confluence*

Step count is independent of 

reduction/execution order!
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Effectful Optimality

• Only reduce “needed” terms (cf. Call-by-Need)

‣ Now includes any net containing tokens & actions

‣ Future work: reasoning with effect systems

• Share all reductions from same origin

‣ By iterative duplication (including redexes)

‣ Also: asynchronous actions via explicit tokens

*without race, full asynchronous execution, or optimal GC
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