
Optimal Effects via Token-Passing

ICFP SRC 2025-10-14

Marvin Borner (Undergraduate)

University of Tübingen

ordered execution (effectful)

in parallel to

unordered reduction (pure)

ordered execution (effectful)

in parallel to

unordered reduction (pure)

via token-passing

Optimality

= Call-by-Need + Redex Sharing = Maximal Laziness

3 / 22

Optimality

= Call-by-Need + Redex Sharing = Maximal Laziness

let f = x => x + factorial(100)

in f(0) + f(1)

3 / 22

Optimality from Graph Encoding:

Interaction Nets

Optimality from Graph Encoding:

Effectful Interaction Nets

Interaction Nets are Inherently Unordered

Main Idea

Tokens Traverse the Net and Execute Actors

8 / 22

Main Idea

Tokens Traverse the Net and Execute Actors

8 / 22

Execution of Actors: Read

↓

0
read

↑

42

9 / 22

Execution of Actors: Abort Thread

↓

0
abort

𝜈

10 / 22

Execution of Actors: Recursion/FFI/RPC/…

↓

0
foo

↑

⟦foo⟧

11 / 22

Reduction Paves the Path for Execution

↑

𝛼

𝜆

↓

𝛼

⇝

𝜆

𝛼

↑

⇝

↑

𝑀 ◁ 𝑁 (𝜆𝑥.𝑀′) ▷ 𝑁 △⇝ (𝜆𝑥.𝑀′) 𝑁 ◁ 𝛽⇝ 𝑀′{𝑥 ↦ 𝑁} ◁

12 / 22

Graph Rewrite Rules Redirect the Token

13 / 22

Graph Rewrite Rules Redirect the Token

Monadic

M

𝑅

N ↑

k

⇝

M

𝐿

↑ k

N
(𝑀 𝑁) ◁ △⇝ 𝑀 (𝑁 ◁)

(𝑁 >>= 𝑀) ◁ △⇝ (𝑁 ◁) >>= 𝑀

M

𝐿

↓ k

N

⇝ 𝛼

↑

M

N

k

↓

𝜂

k

M

⇝

↑

M

k

((𝑁 ▷) >>= 𝑀) △⇝ (𝑀 𝑁) ◁ (unit 𝑀) ◁ △⇝ 𝑀 ▷

13 / 22

Graph Rewrite Rules Redirect the Token

Direct Call-by-Value

M

𝑅

N ↑

k

⇝

M

𝐿

↑ k

N
(𝑀 𝑁) ◁ △⇝ 𝑀 (𝑁 ◁)

(𝑁 >>= 𝑀) ◁ △⇝ (𝑁 ◁) >>= 𝑀

M

𝐿

↓ k

N

⇝

↑

𝛼

M

N k

↓

𝜆

k

x M

⇝

↑

𝜆

k

x M

𝑀 (𝑁 ▷) △⇝ (𝑀 ◁) 𝑁 (𝜆𝑥.𝑀) ◁ △⇝ (𝜆𝑥.𝑀) ▷

(𝑀 ▷) 𝑁 △⇝ (𝑀 𝑁) ◁

14 / 22

All While Retaining the One-Step Diamond

Property (Strong Confluence)

Multiple Tokens ⇔ Multiple Threads: fork

↓

ψ

⇝
ψ

↓ ↓

17 / 22

Multiple Tokens ⇔ Multiple Threads: join

∧

↑ ↑

⇝ 𝛼

↓

18 / 22

Multiple Tokens ⇔ Multiple Threads: race

∨

↑

⇝
↑

19 / 22

Summary

• Ordered token traversal happens in parallel to

unordered graph reduction

• Optimality & strong confluence (re. parallelism) remain

20 / 22

More (skipped)

• Proofs (monad laws, strong confluence, …)

• Polarity type system (token <> cotoken)

• Asynchronous actions & their sharing requirements

• Partial application of actors

• Source language, core calculus & implementation

• Bookkeeping via actors (defunctionalization)

• Results: Efficiency, available parallelism

21 / 22

Thank You!

	Optimal Effects via Token-Passing
	
	Optimality

	Optimality from Graph Encoding: Interaction Nets
	Optimality from Graph Encoding: Effectful Interaction Nets
	Optimality: Translate to Interaction Net

	Interaction Nets are Inherently Unordered
	Main Idea
	Tokens Traverse the Net and Execute Actors
	Tokens Traverse the Net and Execute Actors

	Execution of Actors: Read
	Execution of Actors: Abort Thread
	Execution of Actors: Recursion/FFI/RPC/…
	Reduction Paves the Path for Execution
	Graph Rewrite Rules Redirect the Token
	Monadic
	Monadic

	Graph Rewrite Rules Redirect the Token
	Direct Call-by-Value

	All While Retaining the One-Step Diamond Property (Strong Confluence)
	(again: arbitrary order)
	Multiple Tokens ⇔ Multiple Threads: fork
	Multiple Tokens ⇔ Multiple Threads: join
	Multiple Tokens ⇔ Multiple Threads: race
	Summary
	More (skipped)

	Thank You!

