Optimal Effects via Token-Passing

ICFP SRC 2025-10-14
Marvin Borner (Undergraduate)

University of Tiibingen



ordered execution (effectful)
in parallel to
unordered reduction (pure)



ordered execution (effectful)
in parallel to
unordered reduction (pure)
via token-passing



Optimality

= Call-by-Need + Redex Sharing = Maximal Laziness



Optimality

= Call-by-Need + Redex Sharing = Maximal Laziness

let f = x == x + factorial(100)
in T(0) + (1)



Optimality from Graph Encoding:
Interaction Nets



Optimality from Graph Encoding:
Effectful Interaction Nets



Duplicate O

Annihilate O

Erase 0O

Token O
Redirect Token O
Reflect Token O
Infer Left Effectful O
Infer Top Effectful O
Infer Left Uneffectful O

Effectful O
Apply Actor O
Apply Recursor O
Execute Conjunctive Fork O
Execute Disjunctive Fork O
Return Conjunctive Fork O
Return Disjunctive Fork O
Initialize Fartial Application O
Apply Fartially O

%
=



Interaction Nets are Inherently Unordered



Main Idea

Tokens Traverse the Net and Execute Actors



Main Idea

Tokens Traverse the Net and Execute Actors

S D

D S

TOKEN COTOKEN



Execution of Actors: Read

O 0
%

: A
read



Execution of Actors: Abort Thread

<@

abort



Execution of Actors: Recursion/FFI/RPC/...

[foo]



Reduction Paves the Path for Execution




Graph Rewrite Rules Redirect the Token



Graph Rewrite Rules Redirect the Token

Monadic

A S SR

(M N) « o M (N <)
(N3>=M)a » (NO)>=M ((N ) 3= M) (MN)q (unit M) < > Mo



Graph Rewrite Rules Redirect the Token

Direct Call-by-Value

K N N N k X M X M
(M N) <« VS M (N <) M (N ») » (MAN  (QxM)a » (Ax.M) >
(N3>=M)a » (NO)>=M (M) N 5 (MN) <



All While Retaining the One-Step Diamond
Property (Strong Confluence)



Duplicate O

Annihilate O

Erase 0O

Token O
Redirect Token O
Reflect Token O
Infer Left Effectful O
Infer Top Effectful O
Infer Left Uneffectful O

Effectful O
Apply Actor O
Apply Recursor O
Execute Conjunctive Fork O
Execute Disjunctive Fork O
Return Conjunctive Fork O
Return Disjunctive Fork O
Initialize Fartial Application O
Apply Fartially O

%
=



Multiple Tokens <> Multiple Threads: fork



Multiple Tokens <> Multiple Threads: join



Multiple Tokens <> Multiple Threads: race

\



Summary

e Ordered token traversal happens in parallel to
unordered graph reduction
« Optimality & strong confluence (re. parallelism) remain



More (skipped)

« Proofs (monad laws, strong confluence, ...)

» Polarity type system (token <> cotoken)

« Asynchronous actions & their sharing requirements
 Partial application of actors

 Source language, core calculus & implementation

« Bookkeeping via actors (defunctionalization)

« Results: Efficiency, available parallelism



Thank You!




	Optimal Effects via Token-Passing
	
	Optimality

	Optimality from Graph Encoding: Interaction Nets
	Optimality from Graph Encoding: Effectful Interaction Nets
	Optimality: Translate to Interaction Net

	Interaction Nets are Inherently Unordered
	Main Idea
	Tokens Traverse the Net and Execute Actors
	Tokens Traverse the Net and Execute Actors

	Execution of Actors: Read
	Execution of Actors: Abort Thread
	Execution of Actors: Recursion/FFI/RPC/…
	Reduction Paves the Path for Execution
	Graph Rewrite Rules Redirect the Token
	Monadic
	Monadic

	Graph Rewrite Rules Redirect the Token
	Direct Call-by-Value


	All While Retaining the One-Step Diamond Property (Strong Confluence)
	(again: arbitrary order)
	Multiple Tokens ⇔ Multiple Threads: fork
	Multiple Tokens ⇔ Multiple Threads: join
	Multiple Tokens ⇔ Multiple Threads: race
	Summary
	More (skipped)

	Thank You!

