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Optimality

= Call-by-Need + Redex Sharing = Maximal Laziness



Optimality

= Call-by-Need + Redex Sharing = Maximal Laziness

let f = x == x + factorial(100)
in T(0) + (1)
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Optimality from Graph Encoding:
Effectful Interaction Nets
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Interaction Nets are Inherently Unordered



Main Idea
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Execution of Actors: Read
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Execution of Actors: Abort Thread
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Execution of Actors: Recursion/FFI/RPC/...
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Reduction Paves the Path for Execution




Graph Rewrite Rules Redirect the Token



Graph Rewrite Rules Redirect the Token
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Graph Rewrite Rules Redirect the Token

Direct Call-by-Value
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All While Retaining the One-Step Diamond
Property (Strong Confluence)
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Multiple Tokens <> Multiple Threads: fork



Multiple Tokens <> Multiple Threads: join



Multiple Tokens <> Multiple Threads: race

\



Summary

e Ordered token traversal happens in parallel to
unordered graph reduction
« Optimality & strong confluence (re. parallelism) remain



More (skipped)

« Proofs (monad laws, strong confluence, ...)

» Polarity type system (token <> cotoken)

« Asynchronous actions & their sharing requirements
 Partial application of actors

 Source language, core calculus & implementation

« Bookkeeping via actors (defunctionalization)

« Results: Efficiency, available parallelism



Thank You!
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